Available online at www.sciencedirect.com
IITEIIITIOIAL HIUIIIL OF

science (g)oinscTe SOLIDS a
@ STHIIGTIIHES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 42 (2005) 4541-4554

The scattering of electroelastic waves by an
ellipsoidal inclusion in piezoelectric medium

Hao Ma *°, Biao Wang >*

& School of Science, QingDao Technological University, QingDao 266033, P.R. China
® Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, P.R. China

Received 17 January 2005
Available online 26 February 2005

Abstract

The scattering problem for a single ellipsoidal piezoelectric inclusion embedded in piezoelectric medium is investi-
gated. Based on the polarization method, the extended displacements are expressed in terms of integral equations,
whose kernels are obtained from the Green’s functions of homogenous matrix. In this paper, the 3D dynamic Green’s
functions are derived by means of the Radon transform technique. To illustrate the use of the equations, scattering by a
piezoelectric, ellipsoidal inhomogeneity in a piezoelectric medium is considered in the low frequency and an asymptotic
formula for this scattering cross-section is obtained. Numerical results of the scattering cross-sections are carried out for
a spheroidal BaTiOs-inclusion in a PZT-SH-matrix.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

For recent two decades, various types of piezoelectric composites have been developed and widely ap-
plied in many engineering applications, for example, sonar projector, underwater acoustic and medical
ultrasonic imaging, etc. In general, comprising two or more constituents, piezoelectric composites take
advantage of each constituent and have superior electromechanical coupling characteristics compared to
homogenous piezoelectric material. These materials have been fabricated in many forms including the sec-
ond phase piezoelectric inclusions embedded in a polymer matrix and polymer inclusions in a solid piezo-
electric ceramic matrix. The second-phase piezoelectric inclusions in the composites can be continuous
fibers, short fibers, holes, voids or dispersed quasispherical particles. The studies on the physical and
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mechanical properties of such materials become very important in engineering. By use of different methods,
many researchers have adequately investigated the problems for the piezoelectric composite containing
inclusions.

Deeg (1980) extended the classical method of Eshelby (1957) to the problem of an ellipsoidal inclusion
embedded in piezoelectric matrix. In case of ellipsoidal inclusion and in the limiting case of elliptical crack,
Wang (1992a,b) represented the coupled electroelastic fields in integral form, whose kernels were the
Green’s functions, and obtained the analytical solutions for the coupled elastic and electric field inside
the inclusion and just outside the inclusion. As a limiting case of an ellipsoidal inclusion, Dunn and Taya
(1993) obtained close-form Eshelby tensor for elliptic cylindrical, circular cylindrical and ribbon-like inclu-
sion. Kuo and Huang (1997) considered the problems of piezoelectric composites containing spatially ori-
ented inclusions. The explicit expressions for the electrostatic tensors analogous to the Eshelby tensors were
obtained, and with these tensors, the analytical expressions for the electroelastic fields had been derived.

All the results mentioned above are static solutions. Unlike static problems, relatively little work has
been done regarding on the wave propagation in the inhomogeneous piezoelectric solid. Maurizio Romeo
(2002) considered the propagation of transient shear horizontal waves in the piezoelectric layer with free
boundaries within a time domain approach, and using the separation of space variables, the problem for
the Laplace transforms of electromechanical fields was solved. Levin et al. (2002) investigated the propa-
gation of electroacoustic waves in a piezoelectric transversely isotropic medium containing a single inhomo-
geneity fiber. By means of Green’s function approach, a system of coupled integral equations for the
electroelastic field was solved in closed form in the long-wave approximation. The objective of the present
paper is to provide the general solutions for the electroelastic field for the scattering problem by a single
ellipsoidal piezoelectric inclusion embedded in a piezoelectric medium. The present method is based on
the polarization approach, which has been adopted by Willis (1980) to deal with the scattering problem
in anistropic elastic body.

The paper is arranged as follows: in Section 2, the integral equations for the electroelastic dynamic prob-
lem are derived for the inhomogeneous piezoelectric body. The kernels of the integral equations are ob-
tained from the Green’s function of the ‘comparison body’, which is identified with the matrix in
scattering problem. In Section 3, by the use of the Radon transform method, three-dimensional dynamic
Green’s functions for the homogeneous piezoelectric solids are obtained. The Green’s functions can be rep-
resented as a summation of a regular dynamic term and a singular static term. In Section 4, the expression
for the scattering cross-section of the inclusion in the piezoelectric mediums is given. In Section 5, with the
retention of just the terms of lowest order in the series for the two polarizations, a formal solution in the
low frequency is developed for the scattering problem of an ellipsoidal inclusion in the piezoelectric matrix.
Particular attention is paid to the scattering cross-section and its approximate solution is given. In Section
6, numerical results are given for a single spheroidal BaTiOs-inclusion in a PZT-5H-matrix, including the
limiting cases for the scattering cross-sections of a flat disc, rigid circular disc, long fiber and rigid fiber.

2. Polarization equations

For inhomogeneous piezoelectric media, the constitutive equations can be written as
ai(x,1) = ciu(x, u(x, 1) + e (x, )0, (x,1)
Di(;, t) = eik](;, t)ukil(;, l) — 8,-1(;, t)(p,l(;a t)

where x = (x1,x2,x3), ¢ is the elastic moduli tensor, e is the piezoelectric moduli tensor and ¢ is the permit-
tivity of the dielectric material. u and ¢ are the elastic displacement and the electric potential. D and ¢ are
the electric displacement and the elastic stress tensor, respectively.

(2.1)
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It is noteworthy that the material constants satisfy the following symmetric relations

Cijki = Cjikl = Cijik = Cklij (2.2)
€lij = €li, & = &

The substitution of Eq. (2.1) into the elastic field equations and Maxwell’s equation leads to a coupled sys-

tem of differential equations as follows:

(comttrs + i@ ) + 1 = (Puies)

(2.3)
(et — 81‘140,1),,- -q=0

in which p is the material’s density, f is the body force tensor, ¢ is density of free electric charges.
In order to simply the formulations presented above, the following notations are introduced (Pan and
Tonon, 2000),

w I1=1,23

o I=4

Oij J = 1,2,3
= 25
o {a J=4 23)

Ci/kl J,K:1,2,3
e[,:,- J:1,2,3,K:4

C,' == 26
MY e J=4K=1,2,3 (26)
—&j J,K:4
- J=12,3
—q J=4
p/’k JaK:17273
P {0 J=4orK=4 (238)

where uy, 0,7, Cisxs, Fyand p g are called the extended displacements, extended stress, extended body force
and extended momentum, respectively. It is note that in above Eqs. (2.4)—(2.8), and late on, the lowercase
and uppercase subscripts take on the range 1-3 and 1-4, respectively. In terms of this shorthand notation,
the equations of wave motion can be rewritten as

(Cukiugg); +F; = (PJK”KJ)J (2.9)

together with suitable initial and boundary conditions. The initial value problem will be considered for a
body occupying a region ¥V, while the initial conditions will be that extended displacement u and momen-
tum p are prescribed throughout ¥ at t = 0, and the boundary conditions will be of standard type such as:
either the extended force or extended displacement will be prescribed over 0V for all positive ¢.

In inhomogeneous piezoelectric medium, the solution of equation (2.9) is very difficult to be obtained
directly. Now consider, a “comparison” body, occupying the same region ¥ but having operator C* and
p". Substitution into the equation of motion (2.9) yields

(Chtiks) ; + Fr = (phxux.), (2.10)

It is useful to consider an adjoint problem for the field v and the corresponding “adjoint” operators are C*
and p*, then gives
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(C?KJiUJJ),I +Ex = (P;(JUJJ),; (2.11)

where Ex is the extended body force of an adjoint problem for the field v.
By use of Gauss’ theorem, Eqgs. (2.10) and (2.11) leads to the identity

/ dt/ dS[UJC?]KlMKJn,' — uKC?](J,'UJ,in/] + / dt/ d;(UJFJ - MKEK)
0 or 0 v

= /d;[vjpgKuK,, — UKPZJUJJ]ZO (212)
Vv

In the derivation of Eq. (2.12), the relations

/ df/ d;(UJ,ng/m”KJ — uK«,/CTK]leJ) = 0
0 ! (2.13)

/ df/ d;(UJ,tp_(}KuK,t — Uk Py 0s) =0
0 v

are used.
Now let G be the Green’s functions for the comparison body, their components satisfy the equations

(ClxiGrpa) ; + 6p0(x —=x")3(t — 1) = (Pl Grrs),, (2.14)

with homogeneous initial and boundary conditions. The first index of Gxp(x) denotes the component of the
extended Green’s displacements, while the second denotes the direction of the extended point force. The
Green’s functions represent the coupled elastic and electric response to the application of time-harmonic
point force or point charge.

And let G* be the adjoint Green’s function, having components to satisfy

(C}FKJiG;QJ),I + 5KQ5(; _;//)5(1 - t”) = (pl*(]GjQ,t),t (2.15)
with the corresponding adjoint boundary conditions. Application of identity (2.12) to G and G* then gives
Gro(x', 0, X" 1) = Gpo(¥', 1", ¥, 1) (2.16)

The above equation shows that the useful adjoint Green’s function G* may be obtained from the Green’s
function G, which has more direct physical meaning.

With this background, we employ the extended field u that exists in the original body to produce two
polarizations

iy = (Cuxi — CS}KI)MK,M ;= (px — PBK)”KJ (2.17)

relative to the comparison medium. The extended stress and the extended momentum in the original body
may now be given in the forms

Oy =Ty + C?JK]”K,/’ PiklUk: = PBKMKJ + 7y (2.18)
and substitution of (2.18) into the equation of motion (2.9) leads to
(Compttic1) ; + Fo + T — 1y = (pgtix.s) (2.19)

Application of the identity (2.12) to the field u defined by (2.19) and G* yields

up(x", 1) = — / dr / dx [ng,i(;g, ¥Vt (x,0) — Gy, (3,1, ;’/,t”)nj} +ul (X, 1) (2.20)
Vv
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in which

up(x",1") —/dt/deJQ x,t, X" t")F,(x,1) /dt/ dS uk CliiGroit — Gro[Couxc s + Tuln }

/ 4% {Gig(, 0,7, )[(ett 1) (%,0) + 7,(x, 0)] — s (%,0) (9 G, ) (5, 0, X', 1)}
(2.21)

Eq. (2.20) shows that u is the exact solution of the given boundary value problem, but for the comparison
body rather than the original; it should be noted that this interpretation is valid only if momentum rather
than velocity is regarded as prescribed initially. Comparing Egs. (2.20) and (2.21) with the Willis’s results
(Willis, 1980) for the inhomogeneous anisotropic case, it can be proved that the present formations can be
reduced to the pure elastic case when the piezoelectric moduli and the permittivity tend to zero, i.e, both the
lowercase and uppercase subscripts in Egs. (2.20) and (2.21) only take on the range 1-3.

Symbolically, therefore

u=-St—Mn+u’ (2.22)
where
(S1),(%,1) = / dr / %S (3,6, ¥, 1)ty (5,7 (2.23)
Vv
(Mn),(x,1) = / dr / dx'M o (x,t, X', ¢ )m;(x', 1) (2.24)
Vv
and
- - oG, .  _ 0Goy — —
1 JO oy oJ 1
: = = 2.2
Sou(x,t,x',1) o (x',¢, x,1) o (x,t,x',1) (2.25)
S G, - _
Mo;(x,t,x',1') = — ’/Q (x', ¢, x,t) = ag?’ (x,1,x,7) (2.26)
Substitution of (2.22) into (2.18) gives the equations
(C— CO);IQITI'J + (Sx)gliJTiJ + (MX)QI_/'TCI = “g,l (2.27)
(p—p°);, 7+ (S) 1w + (M) 1 =), (2.28)

where S,, M, S, and M, are operators with kernels

0’Gyy 0*Gy;

sy _%Gu o @G 2.29

( -)Q/l] o 0x ( )Q’J Ox; 0t ( )
G,y 0’G

o PG, %G, 2.30

(80) 0rox;’ My oror' o

Egs. (2.27) and (2.28), together with the formula (2.22), will be applied to the problem of scattering plane
wave by a single inclusion.

3. Scattering from an inclusion

In this section, the scattering problem will be considered based on equation (2.27) and (2.28). The matrix
will have the operator C and p, while the inclusion have the operator C* and p*. The comparison material
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will be taken as identical to the matrix, so that the polarizations 7 and = are non-zero only over the volume
V* occupied by the inclusion. The terms on the right-hand side of Egs. (2.27) and (2.28) will be associated
with the incident plane wave

W = UKe—i[kOGP.;)mr] (3.1)
where n° is unit vector and the polarization U and wavenumber k satisfy
—0
koL (n) — @’ p]Ux =0 (3:2)
where
—0
LJK( n ) = C[JK[I’I?H(I) (33)

We consider now a harmonic oscillation in the homogeneous piezoelectric matrix with frequency w. A
steady-state solution will be sought, in which dependent 7 and = on ¢ only through a factor e . Corre-
spondingly, time-reduced versions of operator S, M are required. Because the matrix is infinite, they are
obtained from the time-reduced Green’s function for an infinite body. The Green’s function G satisfies

*Gp(x)
Ox;0x;
This equation requires that G is an analytic function of w in the upper half of the complex w-plane. Since

the dynamic 3D Green’s functions is not available, the derivation of formulation will be presented in detail.
An application of the Radon transform defined by (A.1) to Eq. (3.4) gives

Cuxi + wszKGKP(;) + 5JP5(;) =0 (3.4)

2

.0 ~
Li(n) 55+ @’ | Gir(s) + 0,p0(s) = 0 (3.5)
where
p 0 0 O
0 0 0
p=1| 7 (3.6)
00 p O
0 00O
Eq. (3.5) can be decomposed as follows:
_ ~ Gy s
L) g+ 9070 Gy + L) G5 = 3,009 (3.7)
— 62 2 ~ — 62844(S)
Lj (H)@‘pr 5/'1( Gk4(S)+Lj4(l’l) 0s? =0 (38)
_ G, _ %G,
Ly (n) 6s2p + Laa(n) 6s2p =0 (3.9)
La) Z08 1 1y T8 _ (3.10)
) o w e T O ’

After some mathematical operations, the above equations become

2

~. 0 BN
ij(l’l)a—‘saﬂ‘pa)zbjk ka S —5”75(5‘) (311)
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62

[F (n )6 5 T pw 5/k] Gua = LisLy 6(s) (3.12)
G, L, 0°G,

2 = Lula—ps (3.13)
’G ’G

6s244 =—Ly |Lu o 2k4 + (s) (3.14)

in which

Tj(n) = Ly — Ly LisLa (3.15)

By transforming the coordinates to the bases of the eigenspaces of I' jk(ﬁ), the system of inhomogeneous
Eqgs. (3.11)—(3.14) can be reduced to a system of uncoupled 1-D Helmholtz equations. The eigenvetors
E;,, corresponding to the eigenvalues 4, are defined by

Fy(n)Epn = mEsm  (m=1,2,3) (3.16)

It is noted that the summation convention does not applied the suffix, m, wherever 4,,, and later on, ¢,, and
k,, appear. It is easily proved that I ,k( ) is symmetric and positive matrix. Therefore, the eigenvetors are
real value and can be taken as orthonormal bases, and the eigenvalues are positive real value. Hence, there
exist

EjnEjy = EpnjEyj = Omn (3.17)
The transformation of 6kp to the new bases is given by

G,p = EinGiy (3.18)
The inverse transformation is then given by

Gy = EnG,, (3.19)

Both sides of Eq. (3.19) are multiplied by Ej,, then substituting (3.19) into (3.11) yield the result

[+ p?] G, = —Epud(s) (m=1,2,3) (3.20)
The solution of above equations is given by Wang and Achenbach (1995)

G,y = %g’;{me’*“' (3.21)
where ¢,, and k,, are the phase velocities and wave numbers defined by

Cn =\ Do/ P b = ©] oy (3.22)
By applying Eq. (3.19) and (3.21), the solution of E;k,, is obtained as

Z 12%212 ]:m oinls] (3.23)

The inverse transform of (3.23) is

Ekm LkmEpm . ik - x -
2 nln -1 dQ 24
ka nz Z/nl | zpc 5( )+1kﬂle d (}’I) (3 )

m=1
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Obviously, the above formulations for Green’s functions can be reduced to the results for the pure aniso-
tropic elastic case (Willis, 1980). By use of Egs. (3.16) and (3.17), it is easily verified that

3

S Bl ) (3.25)

2
m=1 pC

Taking advantage of Eq. (3.13) and (3.23), the solution for G,,(x) is given by

— —1 62G4p —1 3 L4kEk E - = 7 —
=— dQ — P28 (- ket"-~11dQ 3.26
Gap(x) 87‘[2/; | 0s? ( ) = ]2 Z/lﬁll 2Lypc2, [ (n-x)+ike }d (n) ( )

m=1

Just as the process of seeking for the solutions for Gy, and G,(x), similar mathematic operations can be
applied for G4 and Gy, the following results can be obtained:

— -1 e EkmE/mL/4 N : ik |7 - x| -
Gra(¥) g > / IWPé)(n-x)—i-lkme }dQ(n) (3.27)

and

- : k| - x| -
— [25(n x) + ke }dsz(n) (3.28)

m=1

- 1< LxEmEjmLjs
Gu(3) = LarEionk jmlja
44(.X) /|n| . 2L44P03,1

From Egs. (3.24) and (3.26)—(3.28), it is noted that the integral representation for Green’s displacements
can be taken as the sum of the static contribution (when w = 0) and the correction by the dynamics.
For the regular dynamic part, the integral can be evaluated numerically without any difficulty. For the sin-
gular part, the integral can be treated as the method proposed by Pan and Tonon (2000) for the static case.
Corresponding representations for the operators appearing in Egs. (2.25), (2.26), (2.29) and (2.30) are ob-
tained as follows:

Em m?i - = - i |7 - x -
Skip = 8712 Z/ " k2pcp? 2(3/(11 -x) — k2 sgn(n x)etn! “‘]dQ(n)
B Ly ErnEpmni [~ — 2 =\ k|7 ¥ -
Saip = =) mz/| | IW [25 (n-x)—k,sgn(n-x)e }dQ(n) 529)
Sia :L : / EinkimLian; [25( x) — kXsgn(n x)e elknln- "qu( ) |
87'[2 ‘”| 1 2L44pC2
Ly EwEmLani [, — — 2 =\ ikn[7 %] -
Sis = g 2 / i e [25(;1 x) — K2sgn(n -x)e }dQ(n)
and
Ekm mil " T - = <73 ikm|n - x -
o > B e n) 2z - e et
Ly EimEpmnin; [ oy — — 257 TN i3 ikaln X -
Dasp = 8n2 Z/ . IW[za (1) = 2K20(n - %) — ikl a(n)
(3.30)

EimEmLian; Lo L imLianin; Y 267 13 ik |1 X | -
§ 25"(n-x) -2 X) — ik e Q
kﬂ4 8n2 /ln e [ 0"(n-x) =2k, 0(n-x)—ik e ]d (n)

LayEnEmLisnin;
(Sx)4ji4 8 2 2L 2
n m=1 ‘"‘ 1 44pC

[25"(2 X)) = 2625(n - x) — ikfne“‘"’ﬁ'ﬂ] dQ(n)
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and
MKP = —iCOGKP (331)
(Mx)Kip = i(USKip (332)
and
(S)pp = —iSyp (3.33)
(M,),(p = —iwMy, (3.34)

Once Egs. (2.27) and (2.28) have been solved for the scattering problem, the total field in (2.22) can be ob-
tained. From equation (2.22), the total field can be considered as the sum of the incident field u’ and a scat-
tered field v. A scattered field v is

v=—-St—Mn (3.35)

4. Scattering cross-section

In this section, we will focus on the scattering cross-section of the inclusion, both for its intrinsic interest
and for its use in estimating attenuation in the inhomogeneous piezoelectric mediums. The scattering cross-
section Q of inclusion is defined as the ratio of the total mean rate of outflow of energy associated with
scattered field v to the mean energy flux in the direction n° associated with the incident wave.

Assuming the extend stress a;; is derived from the scattered field v, the mean flux of energy associated
with v has components

Y,-:fé—‘icu(auﬁjfﬁuvj) (41)

where the superposed bar denotes complex conjugation. The mean rate of energy radiation £ out of a vol-
ume V is then defined by

E = / Yn’dS (4.2)
or
Using Gauss’ theorem, we get
1. -
E= —le/(gu,i@ — G0y + 0y — Gyvy,)d x (43)
v
but
Oy +iom; + o’ p vk =0 (4.4)
and
oy = Cygivg,1 + T (4.5)
It follows, therefore, that
1. ~ 1 -
E = ——1a)/(rul7‘,,,- — fiJUJki)dx ——CU2 /(TC/'T)/ + ﬁ/Uj)dx (46)

in above equation, the polarizations T and = are non-zero only over the volume }” occupied by the inclu-
sion. Eq. (4.6) also shows that only the imaginary part of the produced 7,,7,; and the real part contribute
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n;0; to E. Taking into account Eq. (3.2), the mean energy flux in the direction n’ associated with the plane
wave u’ can be expressed as follows

wk o’ ®
YOZTOCUKIU?I’I(;UJUK :Z_kopJKUJUK ZI;TOU/U] (47)
Then the scattering cross-section Q is given
Q=E/Y’ (4.8)

5. The Rayleigh limit
The system of equations (2.27) and (2.28) is difficult to solve explicitly but they can be simplified consid-
erably in the low frequency range, or Rayleigh limit. Retention of lowest term reduces the equations to

(C" = C) " +T,pty = —ikUpn] x €V’ (5.1)

(p* = p) 'm, = —iwU, xev (5.2)

In above equations, if the inclusion’s diameter is much smaller than the wavelengths of incident fields, T and
7 can be considered as constants over the inclusion. I'°° in Eq. (5.1) is the static limit of operator S,, with
kernel

S / EunBint 531 )de(n) (53)
-1 LyyEgnEning  — — ~

e —=_- S 8 (n - x)dQ 5.4

=g 2 [ P - e 54)
—1 3 E E; L»4n-n, — N

re, =— S8 (- x)dQ 5.5

g X [ e )0 (5:)

1 s / L4qEquijj4nin/ " T -
o == ————— " (n-x)dQ(n 5.6
=g O [ TR ) d0() (56)

and reduces to a constant tensor P; for an ellipsoid x"ATAx = /2, the expression of P is derived in Appen-
dix B.

It follow from (5.1) that, to the lowest order, 7 is the static response to the incident field, while (5.2)
shows that the momentum = is just that produced by inclusion being carried along by the incident wave.
Hence, for an ellipsoidal inclusion, in the Rayleigh limit

-1
Ty = —lk [(C* - '+pP iJQZUQn? (5.7)
and for any inclusion
7y = —io(p’ - p)U, (5.8)

Now we evaluate the scattering cross-section of an ellipsoidal inclusion, it can be obtained from (4.6) and
(4.8), together with (3.35). Considering that 7 is constant over the inclusion, in the first integral term in (4.6)
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only the even part of v;; has a contribution. Therefore equation (3.35) shows that only imaginary and even
parts of S, and M, contribute to Q. From (3.32) and (3.29), M., is odd, while (3.30) shows that the relevant
term in S, is the one involving the exponential term. Furthermore, to the lowest order, the exponential term
may be approximated to unit. This will simplify the results further. Similar considerations apply to the sec-
ond integral term in (4.6), the asymptotic expression for Q is obtained

dnayaras\” o
Q = (1323> 2Y0 |:‘L',J(AS )QIIJ‘CIQ + ﬂkaMkaCp (59)

for an ellipsoid with semi-axes a;, a, az, where

Enin -
(A8, = =3 [ a0

m 1 pC5
Lo Lyt EinE im _
(AS,)y 167‘[2 44 A nnld.Q(n)
’ Jnf=1 pe;,
L44 EgnEmLianing (5.10)
(AS4) s = o o e — e dQ(n)
(AS )y = 16n~ Z fn‘ I%de(ﬁ)
m=1
and
AM Eknl LkmEpm do -
kp = 16n2 Z |n\ | ,06‘3 ( ) ( . )

6. Numerical examples

The scattering cross-section of a variety of inclusions in anisotropic elastic matrix has been considered by
Willis (1980). In this section, the scattering cross-section is calculated for the composite, which is consisted
of a single BaTiOs-inclusion and a PZT-5H-matrix. The matrix and the inclusion are transversely isotropic
piezoelectric material with the symmetry axis x3, and their non-zero elements of material constants are
BaTiOs-inclusion:

¢, = 166 GPa,c;, = 162 GPa, ¢}, = 77 GPa,c}, = 78 GPa

iy =43 GPa,e; = —4.4 Cm %, ¢}, = 18.6 Cm 2, e}s = 11.6 Cm

e, =11.2x 1077 CN"'m2,¢;; = 12.6 x 107 CN"'m 2, p* = 5700 Kgm
PZT-5H-matrix:

c11 = 126 GPa, ¢33 = 117 GPa, ¢y = 55 GPa, ¢j3 = 53 GPa

cas = 35.5 GPa,e3; = —6.5 Cm *;e33 = 23.3 Cm %, e55 = 17.0 Cm >

g1 =151x10° CN'"m 2,653, =13.0x 10° CN"'m 2, p = 7500 Kg m >

In the examples, we suppose the incident wave propagates in the direction normal to the axis x3 and the
plane shear (longitudinal shear, SH) wave polarized in the x;-direction is considered. Thus

p=2— (M)l/z (6.1)

pPén
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n’ = [cos6,sin6,0]" (6.2)

where 6 is the angle between the propagating direction of incident wave and the axis x;.
Also, the energy flux relevant to the incident wave can be expressed as

3 2 372
YO = %U,U, = pﬁz‘” = pﬂzk" (6.3)
Here, U; is taken as
(U1, Uy, Us] = 10,0, 1] (6.4)
U, is obtained by the following equation:
Uy =y, =28 (6.5)

P =
Ejpphjnp 11

We consider an inclusion having the shape of spheroid (a,a, ¢a), with the following special cases:

Case 1. A spherical inclusion, with ¢ = 1.

Case 2. A flat disc inclusion, with ¢ = 1/50.

Case 3. A flat disc cavity, with ¢ = 1/50, and [(C* — C)~' + P]™! reduces to [P — C'T"".
Case 4. A rigid disc, with ¢ = 1/50, and [(C* — C)"' + P] ! reduces to P~

Case 5. A long fibre, with ¢ = 50.

Case 6. A rigid fibre, with ¢ = 50, and [(C* — C)~! + P]™! reduces to P~

The numerical results of the scattering cross-section for the special cases are represented in Table 1,
which are normalized with respect to kga(’. It is worth to point out that the results are independent of
the angle 6 because the matrix is transversely isotropic.

In order to show the validity and feasibility of the relevant formulations, such as Eqgs. (2.22), (5.7)—(5.9),
we let the piezoelectric materials’ piezoelectric moduli and the permittivity equal to zero. In the piezoelectric
case, the lowercase and uppercase subscripts in Egs. (2.22), (5.7)—(5.9) take on the range 1-3 and 1-4,
respectively. When both the lowercase and uppercase subscripts in these equations only take on the range
1-3, it means that the piezoelectric moduli and the permittivity tend to zero, i.e, These formulations can
easily be reduced to the corresponding formulations in Willis” paper (1980). The numerical results for cor-
responding purely elastic cases are presented in Table 2. The numerical results in Tables 1 and 2 show that
the cross-section Q depends upon the properties of the inclusions and matrix. The piezoelectric materials’
piezoelectric moduli and the permittivity may increase the Q that is higher than this in pure elastic case. The

Table 1

The piezoelectric matrix

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
3.083464 x 108 7.702814 x 102 9.532695x 10'? 9.156199 x 10'? 9.294928 x 10?! 5.028276 x 107
Table 2

The elastic matrix

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

8.738551 x 107 3.611364 x 10'? 5.028642 x 102 4.758279 x 102 7.119862 x 10%° 9.524664 x 102
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cross-section Q is one of factors governing the wave attenuation. It is noted that the Q showed in Table 1 is
the cross-section of a single inclusion and the energy flux term is calculated from the elastic moduli, piezo-
electric moduli and permitivity of matrix. When the formulation of the Q is used in composite piezoelectric
material with a lot of inclusions, those material parameters should be the overall moduli.

7. Conclusions

The goal of this paper is to provide the dynamic general solution for an infinite, piezoelectric medium
containing a single piezoelectric, ellipsoidal inclusion. The scattering problem is formulated in terms of inte-
gral equations (2.22), whose kernels are obtained from the Green’s functions for a comparison body. The
novel feature of Eq. (2.22) is the introduction of stress polarization and momentum polarization. In this
paper, the Random transform method is used for the dynamic Green’s functions. The most interesting
advantage of this transform is that it reduces a three-dimensional partial differential equation to a one-
dimensional partial differential equation. After the 1-D time harmonic wave problem is solved, the 3-D
Green’s function follows from the application of inverse transform. Finally, the asymptotic solution for
the scattering cross-section is derived in the Rayleigh limit.

Appendix A
Consider function f(x) defined in R’, the Radon transform of f(x) is defined as
fs,n) = /f V(s —n-x)dx (A1)
where 7 is a unite vector and () is the one-dimensional Dirac delta. The Radon transform is an integration

of f(x) over all planes defined by n-x =s.
The inverse Radon transform defined as

1 N _
SO =R = =g [ 715 m)de(n) (A2)
[n]=1
in which
o P f(s,m
F(n-x, %) :% - (A.3)
Appendix B

For the static problem in the piezoelectric medium, the infinite-body Green’s function G satisfies the fol-
lowing equation:

CiJKlGKPJi(;) +0,p0(x) =0 (B.1)

A convenient representation for G is easiest obtained by employing the plane-wave expansion

d(x) = ﬁ ] 8" (n-x)ds (B.2)
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We observe that

Gip(n-x) = —(Cummin;) ' 8,p0(n - x) (B.3)
satisfies the equation

CuxiGip i(n-x) 4+ 0,p8"(n-x) =0 (B.4)
Hence, the expression for G is given

. 1 PN
GJK(x) = @ % (C,«JK;n,»nl) 15(7’1 . x)dS (BS)
|n|=1
and
- - 1 I e/
Ik, () = =G pg(x) = T - ngnyL 2 (n)d" (n - x)dS (B.6)

Now we introduce the constant tensor P defined by Eshelby (1957) into piezoelectric ellipsoidal inclusion
(xTATAx < 2%) problem, the constant tensor P is defined by

P :/ I>°(x)dx (B.7)

is independent of the value of a > 0. so that

1 - I nyn Lyl (n)dS
=—— Lyp(n)dS [ &"(n-x)dx =—|A PR B.8
Pk 82 /ﬁl npngLye (n) /i.<1 (n-x)dx - | /hl [nT(ATA)n} 32 (B.8)
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